
BIBLIOGRAPHY
[17] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.
[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778,
2016.
[19] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Technical Report, 2009.
[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.
[21] A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4013–4021, 2016.
[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recog-
nition,” arXiv preprint arXiv:1409.1556, 2014.
[23] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.
[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” Interna-
tional Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.
[25] “iNaturalist challenge at FGVC 2017.” https://www.kaggle.com/c/
inaturalist-challenge-at-fgvc-2017. Accessed: 2018-04-11.
[26] E. Learned-Miller, G. B. Huang, A. RoyChowdhury, H. Li, and G. Hua, “Labeled faces in the
wild: A survey,” in Advances in face detection and facial image analysis, pp. 189–248, Springer,
2016.
[27] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep features for scene
recognition using places database,” in Advances in neural information processing systems,
pp. 487–495, 2014.
[28] “iMaterialist challenge at FGVC 2018.” https://www.kaggle.com/c/
imaterialist-challenge-furniture-2018. Accessed: 2018-04-11.
[29] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories,” Computer vision
and Image understanding, vol. 106, no. 1, pp. 59–70, 2007.
[30] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional
networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017.
[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,” IEEE International Conference on Computer
Vision (CVPR), pp. 1–9, 2015.
71